17 research outputs found

    The Microbiome And Pneumonia Disease Severity In Asthmatic Children

    Get PDF
    Background: Pnuemonia is a leading cause of morbidity and mortality worldwide and children diagnosed with asthma have been shown to be at greatly increased risk of recurrent Community-Acquired Pneumonia (CAP). CAP in asthmatic children can incur nearly double the healthcare costs and lead to poorer outcomes during the course of the pneumonia infection. Objective: This study seeks to determine if sputum (SP) samples may be used in the pediatric population to better understand the microbiome environment during severe pneumonia in place or in conjunction with the more commonly used nasopharyngeal (NP) samples. Additionally, this study seeks to identify features of the microbiome associated with pneumonia severity in asthmatic children. Methods: Sputum and nasopharyngeal/oropharyngeal (NP/OP) samples were collected from asthmatic children diagnosed with asthma upon admission to a hospital. Bacterial cultures for known CAP pathogens using sputum samples, and PCR detection for viral pneumonia pathogens on the NP/OP samples were performed. To study the microbiome, 16s rRNA analysis of sputum and nasopharyngeal samples was performed and analysis conducted using a variety of single and community-based analyses. Outcomes of interest were LOS \u3e 4 days and admission to the ICU. Results: High relative abundance of CAP pathogens, including Moraxella and Haemophilus, were associated with poorer CAP outcomes in both age groups for both ICU admission and longer LOS. Similarly, a positive sputum culture result for Staphylococcus aureus was found to be significantly associated with more severe pneumonia. Bacteroidetes was associated with shorter LOS and Rothia association with longer LOS in several of the analyses. Both conclusions are consistent with previous characterizations of the bacteria in the onset of pneumonia and asthma. Moraxella was consistently associated with longer LOS and increased risk of ICU admission, consistent with its characterization as a minor CAP pathogen, but was protective against longer LOS in the younger age group. Conclusions: First, our study demonstrates that sputum samples may be used in a pediatric population. Our findings demonstrate that many of the microbiome features previously identified as being predictive of, or associated with, CAP, also serve to predict severe pneumonia outcomes in this pediatric population, including longer Length of Stay (LOS) and Intensive Care Unit (ICU) admission. However, certain inconsistencies in the trends in our data highlight the need to perform microbiome analyses using many different approaches to fully understand the complex relationships between the diverse commensal and pathogenic bacteria that comprise the microbiome

    Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo, as of Feb. 25, 2019.

    Get PDF
    BackgroundAs of February 25, 2019, 875 cases of Ebola virus disease (EVD) were reported in North Kivu and Ituri Provinces, Democratic Republic of Congo. Since the beginning of October 2018, the outbreak has largely shifted into regions in which active armed conflict has occurred, and in which EVD cases and their contacts have been difficult for health workers to reach. We used available data on the current outbreak, with case-count time series from prior outbreaks, to project the short-term and long-term course of the outbreak.MethodsFor short- and long-term projections, we modeled Ebola virus transmission using a stochastic branching process that assumes gradually quenching transmission rates estimated from past EVD outbreaks, with outbreak trajectories conditioned on agreement with the course of the current outbreak, and with multiple levels of vaccination coverage. We used two regression models to estimate similar projection periods. Short- and long-term projections were estimated using negative binomial autoregression and Theil-Sen regression, respectively. We also used Gott's rule to estimate a baseline minimum-information projection. We then constructed an ensemble of forecasts to be compared and recorded for future evaluation against final outcomes. From August 20, 2018 to February 25, 2019, short-term model projections were validated against known case counts.ResultsDuring validation of short-term projections, from one week to four weeks, we found models consistently scored higher on shorter-term forecasts. Based on case counts as of February 25, the stochastic model projected a median case count of 933 cases by February 18 (95% prediction interval: 872-1054) and 955 cases by March 4 (95% prediction interval: 874-1105), while the auto-regression model projects median case counts of 889 (95% prediction interval: 876-933) and 898 (95% prediction interval: 877-983) cases for those dates, respectively. Projected median final counts range from 953 to 1,749. Although the outbreak is already larger than all past Ebola outbreaks other than the 2013-2016 outbreak of over 26,000 cases, our models do not project that it is likely to grow to that scale. The stochastic model estimates that vaccination coverage in this outbreak is lower than reported in its trial setting in Sierra Leone.ConclusionsOur projections are concentrated in a range up to about 300 cases beyond those already reported. While a catastrophic outbreak is not projected, it is not ruled out, and prevention and vigilance are warranted. Prospective validation of our models in real time allowed us to generate more accurate short-term forecasts, and this process may prove useful for future real-time short-term forecasting. We estimate that transmission rates are higher than would be seen under target levels of 62% coverage due to contact tracing and vaccination, and this model estimate may offer a surrogate indicator for the outbreak response challenges

    Projections of Ebola outbreak size and duration with and without vaccine use in Équateur, Democratic Republic of Congo, as of May 27, 2018.

    Get PDF
    As of May 27, 2018, 6 suspected, 13 probable and 35 confirmed cases of Ebola virus disease (EVD) had been reported in Équateur Province, Democratic Republic of Congo. We used reported case counts and time series from prior outbreaks to estimate the total outbreak size and duration with and without vaccine use. We modeled Ebola virus transmission using a stochastic branching process model that included reproduction numbers from past Ebola outbreaks and a particle filtering method to generate a probabilistic projection of the outbreak size and duration conditioned on its reported trajectory to date; modeled using high (62%), low (44%), and zero (0%) estimates of vaccination coverage (after deployment). Additionally, we used the time series for 18 prior Ebola outbreaks from 1976 to 2016 to parameterize the Thiel-Sen regression model predicting the outbreak size from the number of observed cases from April 4 to May 27. We used these techniques on probable and confirmed case counts with and without inclusion of suspected cases. Probabilistic projections were scored against the actual outbreak size of 54 EVD cases, using a log-likelihood score. With the stochastic model, using high, low, and zero estimates of vaccination coverage, the median outbreak sizes for probable and confirmed cases were 82 cases (95% prediction interval [PI]: 55, 156), 104 cases (95% PI: 58, 271), and 213 cases (95% PI: 64, 1450), respectively. With the Thiel-Sen regression model, the median outbreak size was estimated to be 65.0 probable and confirmed cases (95% PI: 48.8, 119.7). Among our three mathematical models, the stochastic model with suspected cases and high vaccine coverage predicted total outbreak sizes closest to the true outcome. Relatively simple mathematical models updated in real time may inform outbreak response teams with projections of total outbreak size and duration
    corecore